562 research outputs found

    Interface identification in weathered granite strata based on a instrumented drilling system

    Get PDF
    A hydraulic rotary drill instrumented with a drilling process monitoring system (DPM) was used for site investigation in Hong Kong weathered granite foundation engineering. The penetrating parameters such as effective thrust force, rotational speed, flushing pressure, penetrating rate and displacement of the bit were monitored in real time. A varied slope was defined as a significant index for identification of dominative and subsidiary interfaces in the granite site. The result from t-test shows that the confidence of the DPM in identification of the geotechnical interfaces is 99%. Besides, the analysis of variation of the penetrating parameters at the interfaces indicates that there are different fluctuations at the interfaces in the curves of the parameters with borehole depth. The response degree of effective thrust force and penetrating rate to the variation of rock strength at the interfaces is 81.82% alone.link_to_subscribed_fulltex

    Theory and approach of identification of ground interfaces based on rock drillability index

    Get PDF
    Rock drillability index is a very key parameter in selection of drill bit type and determination of productivity in petroleum, mining and geology. Unfortunately, there are many limits in the current definition as well as experimental methods. Drillability is redefined and a new concept of drillability index is brought out from analysis. Under the new concept, the drillability index is defined as penetration rate under specific energy. Based on the coupling relationship among effective thrust, rotation speed, penetration rate and drillability index, a calculation formula is established. Besides, the sensitivity of the drillability index in identification of ground layer is analyzed and its physical signification is expatiated also. The result shows that the new index overcomes the blind area in the traditional concept and can be used in continuous identification of ground layer along borehole profile.link_to_subscribed_fulltex

    Surface Raman spectroscopic investigation of pyridine adsorption at platinum electrodes - effects of potential and electrolyte

    Get PDF
    Surface enhanced Raman spectra of pyridine (Py) at Pt electrodes have been investigated as a function of potential and supporting electrolyte. The results show a large difference from those reported for coinage metal electrodes of Ag, Au and Cu, emphasising the effective involvement of chemical enhancement on Pt surfaces. At very negative (or positive) potentials, Raman spectra show the competitive coadsorption of hydrogen (or oxygen-containing species) with Py, and in acidic solutions, PyH+ ions prefer to dissociate into Py adsorbed on Pt surfaces even in the presence of chloride ions. The differences in the surface bonding strength for Py on Pt and coinage metal electrodes are explained in terms of the different electronic configurations of the metals

    Fiber-optic parametric amplifier and oscillator based on intracavity parametric pump technique

    Get PDF
    Chinese Government Scholarship of Postgraduates' Oversea Study For Building High-Level UniversityA cost-effective fiber optical parametric amplifier (FOPA) based on the laser intracavity pump technique has been proposed and demonstrated experimentally. The parametric process is realized by inserting a 1 km highly nonlinear dispersion-shifted fiber (HNL-DSF) into a fiber ring-laser cavity that consists of a high-power erbium-doped fiber (EDF) amplifier and two highly reflective fiber Bragg gratings. Compared with the conventional parametric pump schemes, the proposed pumping technique is free from a tunable semiconductor laser as the pump source and also the pump phase modulation. When the oscillating power of 530 mW in the EDF laser cavity is achieved to pump the HNL-DSF, a peak parametric gain of 27.5 dB and a net gain over 45 nm are obtained. Moreover, a widely tunable fiber-optic parametric oscillator is further developed using the FOPA as a gain medium. (C) 2009 Optical Society of Americ

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    In-vitro model systems to study Hepatitis C Virus

    Get PDF
    Hepatitis C virus (HCV) is a major cause of chronic liver diseases including steatosis, cirrhosis and hepatocellular carcinoma. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. The development of in-vitro models such as HCV infection system, HCV sub-genomic replicon, HCV producing pseudoparticles (HCVpp) and infectious HCV virion provide an important tool to develop new antiviral drugs of different targets against HCV. These models also play an important role to study virus lifecycle such as virus entry, endocytosis, replication, release and HCV induced pathogenesis. This review summarizes the most important in-vitro models currently used to study future HCV research as well as drug design

    Prediction of Deleterious Non-Synonymous SNPs Based on Protein Interaction Network and Hybrid Properties

    Get PDF
    Non-synonymous SNPs (nsSNPs), also known as Single Amino acid Polymorphisms (SAPs) account for the majority of human inherited diseases. It is important to distinguish the deleterious SAPs from neutral ones. Most traditional computational methods to classify SAPs are based on sequential or structural features. However, these features cannot fully explain the association between a SAP and the observed pathophysiological phenotype. We believe the better rationale for deleterious SAP prediction should be: If a SAP lies in the protein with important functions and it can change the protein sequence and structure severely, it is more likely related to disease. So we established a method to predict deleterious SAPs based on both protein interaction network and traditional hybrid properties. Each SAP is represented by 472 features that include sequential features, structural features and network features. Maximum Relevance Minimum Redundancy (mRMR) method and Incremental Feature Selection (IFS) were applied to obtain the optimal feature set and the prediction model was Nearest Neighbor Algorithm (NNA). In jackknife cross-validation, 83.27% of SAPs were correctly predicted when the optimized 263 features were used. The optimized predictor with 263 features was also tested in an independent dataset and the accuracy was still 80.00%. In contrast, SIFT, a widely used predictor of deleterious SAPs based on sequential features, has a prediction accuracy of 71.05% on the same dataset. In our study, network features were found to be most important for accurate prediction and can significantly improve the prediction performance. Our results suggest that the protein interaction context could provide important clues to help better illustrate SAP's functional association. This research will facilitate the post genome-wide association studies

    CPP-ZFN: A potential DNA-targeting anti-malarial drug

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multidrug-resistant <it>Plasmodium </it>is of major concern today. Effective vaccines or successful applications of RNAi-based strategies for the treatment of malaria are currently unavailable. An unexplored area in the field of malaria research is the development of DNA-targeting drugs that can specifically interact with parasitic DNA and introduce deleterious changes, leading to loss of vital genome function and parasite death.</p> <p>Presentation of the hypothesis</p> <p>Advances in the development of zinc finger nuclease (ZFN) with engineered DNA recognition domains allow us to design and develop nuclease of high target sequence specificity with a mega recognition site that typically occurs only once in the genome. Moreover, cell-penetrating peptides (CPP) can cross the cell plasma membrane and deliver conjugated protein, nucleic acid, or any other cargo to the cytoplasm, nucleus, or mitochondria. This article proposes that a drug from the combination of the CPP and ZFN systems can effectively enter the intracellular parasite, introduce deleterious changes in its genome, and eliminate the parasite from the infected cells.</p> <p>Testing the hypothesis</p> <p>Availability of a DNA-binding motif for more than 45 triplets and its modular nature, with freedom to change number of fingers in a ZFN, makes development of customized ZFN against diverse target DNA sequence of any gene feasible. Since the <it>Plasmodium </it>genome is highly AT rich, there is considerable sequence site diversity even for the structurally and functionally conserved enzymes between <it>Plasmodium </it>and humans. CPP can be used to deliver ZFN to the intracellular nucleus of the parasite. Signal-peptide-based heterologous protein translocation to <it>Plasmodium</it>-infected RBCs (iRBCs) and different <it>Plasmodium </it>organelles have been achieved. With successful fusion of CPP with mitochondrial- and nuclear-targeting peptides, fusion of CPP with 1 more <it>Plasmodium </it>cell membrane translocation peptide seems achievable.</p> <p>Implications of the hypothesis</p> <p>Targeting of the <it>Plasmodium </it>genome using ZFN has great potential for the development of anti-malarial drugs. It allows the development of a single drug against all malarial infections, including multidrug-resistant strains. Availability of multiple ZFN target sites in a single gene will provide alternative drug target sites to combat the development of resistance in the future.</p

    Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest

    Get PDF
    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (Amass), nitrogen concentration (Nmass), and δ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (Aarea), phosphorus concentration per unit mass (Pmass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree Aarea decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana δ13C increased four times more than tree δ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher Amass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests

    Analysis and characterization of heparin impurities

    Get PDF
    This review discusses recent developments in analytical methods available for the sensitive separation, detection and structural characterization of heparin contaminants. The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007–2008 spawned a global crisis resulting in extensive revisions to the pharmacopeia monographs on heparin and prompting the FDA to recommend the development of additional physicochemical methods for the analysis of heparin purity. The analytical chemistry community quickly responded to this challenge, developing a wide variety of innovative approaches, several of which are reported in this special issue. This review provides an overview of methods of heparin isolation and digestion, discusses known heparin contaminants, including OSCS, and summarizes recent publications on heparin impurity analysis using sensors, near-IR, Raman, and NMR spectroscopy, as well as electrophoretic and chromatographic separations
    corecore